Princip práce genetického algoritmu je postupná tvorba generací různých řešení daného problému. Při řešení se uchovává tzv. populace, jejíž každý jedinec představuje jedno řešení daného problému. Jak populace probíhá evolucí, řešení se zlepšují. Tradičně je řešení reprezentováno binárními čísly, řetězci nul a jedniček, nicméně používají se i jiné reprezentace (strom, pole, matice, …). Typicky je na začátku simulace (v první generaci) populace složena z naprosto náhodných členů. V přechodu do nové generace je pro každého jedince spočtena tzv. fitness funkce, která vyjadřuje kvalitu řešení reprezentovaného tímto jedincem. Podle této kvality jsou stochasticky vybráni jedinci, kteří jsou modifikováni (pomocí mutací a křížení), čímž vznikne nová populace. Tento postup se iterativně opakuje, čímž se kvalita řešení v populaci postupně vylepšuje. Algoritmus se obvykle zastaví při dosažení postačující kvality řešení, případně po předem dané době.