
Academic Master in Geomatic Engineering and
Geoinformation

WEB DEVELOP AND GEOPORTALS

Guide of developed contents in lectures.

J. Gaspar Mora Navarro.

Univesitat Politécnica de Valencia.
Departamento de Ingeniería Cartográfica, Geodesia y Fotogrametría Department of Cartographic

Engineering and Photogrametry

Valencia, February 2017

WEB DEVELOP AND GEOPORTALES.

J. Gaspar Mora Navarro

5 de mayo de 2017

Índice general

1 Web develop in Linux 1
1.1 Introduction to Linux . 2

1.1.1 Apache HTTP server . 2
1.1.2 Apache configuration files . 4
1.1.3 Project folder organization in this course . 5
1.1.4 Check a WSGI project . 6

1.1.4.1 Python code of the WSGI application ejemwsgi 6
1.1.4.2 Static code of the WSGI application ejemwsgi 7

2 HTML5, CSS y JavaScript 8
2.1 Technologies related with the developing and geoportals 9

2.1.1 Base de datos: el componente más importante 9
2.2 HTML 5 . 11

2.2.1 New features from HTML 5 . 11
2.2.2 Publicar una web . 11
2.2.3 HTML 5 label classification . 11

2.2.3.1 Labels for the structure of the page . 12
2.2.3.2 Label for the page structure inside the BODY 12
2.2.3.3 Text groups . 12
2.2.3.4 Hipertext and semantics . 13
2.2.3.5 Tablas . 13
2.2.3.6 HTML5 resources . 14

2.2.4 Exercise 1. First steps with HTML 5 . 14
2.2.5 Exercise 2. Creation of a web page with structure but without styles 14

2.3 Cascade style seeds. CSS . 17
2.3.1 Positioning elements in HTML 5 with CSS . 19
2.3.2 Exercise 3. CSS. 20

2.4 Formularios HTML5 . 21
2.4.1 Práctica 4: formularios . 21

2.5 JavaScript . 22
2.5.1 Exercise 5. JavaScript . 25
2.5.2 GPS: Geolocation interface . 27

3 IDE configuration and pozossan projects installation 28
3.1 IDE configuration . 29
3.2 pozossan project installation . 30

4 OpenLayers 3.5 31
4.1 Configure JSONP in GeoServer . 32
4.2 OpenLayers 3.5 map definition . 32
4.3 WMS geoserver Styles. SLD . 33

I

ÍNDICE GENERAL

4.4 Click, Selec, Draw and Snap interactions . 34
4.5 Exercise 6. Map drawing and modify. 34

5 Dynamic sites with Python and WSGI 36
5.1 Before start programming with Python . 37

5.1.1 Debugging Python code. File error.log . 37
5.1.2 Mostrar errores en el navegador . 37
5.1.3 Remote debugging with PyDev . 37
5.1.4 Importing modules from a WSGI application . 38

5.2 WSGI application example: dw_wsgi_example . 38
5.2.1 Create the wsgi application index.py . 38

5.3 Divide and you will win . 40
5.4 Exercise 7. Division of a HTML page in small parts . 42
5.5 Send and process GET data in a wsgi application . 42

5.5.1 Manage GET data in the urls . 42
5.5.2 Server data send from html, using GET method 44
5.5.3 Example of processing GET data in order execute the adequate Python function . 44

5.6 Manage JSON strings . 45
5.7 Sending data to the server and to receive data from the server with Ajax 46
5.8 Exercise 8. Ajax . 48
5.9 To make changes in PostgreSQL with Pyhton. Use of the psycopg2 library 49

5.9.1 Table creation . 50
5.9.2 To insert rows with geometry . 50
5.9.3 Updating rows . 51
5.9.4 Selecting rows . 52

5.10 Functions to help the student . 54
5.10.1 To execute queries with HTML data forms . 54
5.10.2 To load a JSON string in a HTML form . 55

5.11 Exercise 9. Database update across Internet . 55
5.12 Session control . 55

5.12.1 Session management example with Beaker . 56

6 Evaluation 58
6.1 Evaluation . 59

6.1.1 Project minimum requirements of the own project 59

II

Índice de figuras

2.1 Technologies related with the web develop and geoportals. 9
2.2 Schema client-server. 10
2.3 A NAV element in the HEADER and a ASIDE element in the BODY. 15
2.4 Main section and a subsection inside for the water wells 15
2.5 Section inside of the main section for the pipe data. 16
2.6 Footer, for the body, with the images which are links to other pages 16
2.7 Schema of the parts of the page. 17
2.8 CSS cage model. Source: Tutorial of CSS from HTML.NET. http://www.w3schools.com/CSS/css_boxmodel.asp. 18
2.9 Style effect over the html objects. 19
2.10 Object position and styles from the page using Bootstrap. 20
2.11 User input available checks. 21
2.12 Formularios con HTML5 y Bootstrap. 22
2.13 JavaScript program to sum two numbers. 24
2.14 Change the content of a html element. 25
2.15 Point radiation application. 26

3.1 pozossan database relationship schema. 29

5.1 Division of a page in small files. 42

III

CAPÍTULO 1
Web develop in Linux

1.1 Introduction to Linux

Introduction to Linux

In this subject its going to be used a virtual machine with Ubuntu 14.04. The virtual machine can be
downloaded from http://upvusig.car.upv.es/static/mvdesweb/.

To execute the virtual machine, it can be used the VMWare program, free of charge for not com-
mercial use. It can be downloaded from
https://my.vmware.com/en/web/vmware/free#desktop_end_user_computing/vmware_workstation_player/12_0

You must remember that, using Linux, the names of folders and files are sensitive to upper case
and lower case letters.

Solo existe el usuario desweb, con contraseña desweb111, que es superusuario.
Only exists the user desweb, with password desweb111, which is superuser.

Linux:
user: desweb, psw: desweb111

Apache tomcat7
user: tomcat
psw: tomcat

Geoserver 2.7.6
user: admin
psw: geoserver

Postgres
user postgres, psw: postgres (it must be configured)
desweb, psw: desweb111 (it works)
Both are superusers

Each user only can see and write in his own folder. Each user has one folder assigned in the folder
home

/home/user1
/home/user2
/home/user3
...

If you want to access to modify the content from other folders with one program, it is necessary to
to execute that program with administrator permissions. This can be managed with the console:

sudo program-to-execute

Apache HTTP server

Apache is a program classified as a daemon, or service. A service or daemon is a program which
always is waiting for requests, in a specified port. In the Apache case is the 80 port.

Apache is a service which serves files and executes scripts, but, files and scripts, have to be in the
/var/www/ folder. Outside that folder, Apache can’t have access. The /var/www/ folder is a folder of the
system, to modify its content it is necessary to use the sudo command.

Apache se configura mediante directivas o comandos desde fichero de texto. Las configuraciones
que se van a explicar se introducen siempre en el mismo fichero:

Apache is configured using directives o commands in text files. The configurations which are going
to be explained in this subject are all in the following file:

/etc/apache2/sites-avaiable/000-default.conf
The Apache service is not initialized when the virtual machine is started. In order to start the Apache

service and to have able to serve files, you must to execute the following command:

2

1.1 Introduction to Linux

sudo service apache2 start

Durante la programación, los errores de Pyhon, son reportados por Apache al fichero /var/log/apa-
che2/error.log. El cliente recibe un mensaje 500: internal server error. Para saber qué está pasando hay
que ver el fichero .log Apache, donde se encuentra la traza del error de python. En el listado siguiente
se ve un ejemplo que avisa de que la variable lista_dic se ha usado antes de asignarle un valor.

While programming, Python errors are reported, by Apache, into the file /var/log/apache2/error.log.
The client (the person which is visiting the page with a web navigator), will receive 500 internal server
message. In order to know what happened it is necessary to have a look to the error.log file. In the
following listing a example is sowed. The problem is that lista_dic variable is used before to assign it a
value.

[Fri Feb 17 16:51:13.799903 2017] [core:notice] [pid 21144:tid
140313365424000] AH00094: Command line: ’/usr/sbin/apache2’

[Fri Feb 17 16:52:12.396339 2017] [wsgi:error] [pid 21149:tid
140313066686208] [client 127.0.0.1:60306] Error - <type ’
exceptions.UnboundLocalError’>: local variable ’lista_dict’
referenced before assignment, referer: http://localhost/static/
dw_pozossan/dw_pozossan.html

[Fri Feb 17 16:52:51.039097 2017] [wsgi:error] [pid 21149:tid
140313049900800] [client 127.0.0.1:60318] Error - <type ’
exceptions.UnboundLocalError’>: local variable ’lista_dict’
referenced before assignment, referer: http://localhost/static/
dw_pozossan/dw_pozossan.html

Si se cambia la configuración en el fichero /etc/apache2/sites-avaiable/000-default.conf, hay que
reiniciar el servicio.

In web developing process It will be necessary to change the configuration of Apache, or to change
the Pyhton scripts code very often. In all cases the Apache service have to be reloaded.

sudo service apache2 restart

Si se quiere modificar el fichero /etc/apache2/sites-avaiable/000-default.conf. Se escribe en una
terminal:

If you want to modify the /etc/apache2/sites-avaiable/000-default.conf file, you must to write in the
console:

sudo nautilus

Nautilus is the folders explorer. The above command executes Nautilus as administrator. Then it si
possible to modify all the files in the file system. Once the file is localized whit Nautilus, click over the
file to modify with the right button of the mouse, and select the option Open con Gedit, which is like the
Notepad program in Windows.

Now we know how to modify the apache configuration file, but it is necessary to know some directi-
ves.

3

1.1 Introduction to Linux

Apache configuration files

The most important file is /etc/apache2/sites-avaiable/000-default.conf. It is necessary to know the
following directives:

Indicates the root folder. Is the address where Apache accesses when writing the http://localhost
address. The document root default is:

DocumentRoot "/var/www/html/"

The C:/var/www/html/ folder must no contain any Python script because the user will have able to
see the code, and this is dangerous. That folder only must contain static content. Static content are files
which are not executed in the server: html, css, image, txt, js, ... Never put in the document root folder
files like .py, .php, ...

To allow access to other folder content, inside /var/www/, the following can be used:

<Directory "/var/www/apps/static/">
Options Indexes FollowSymLinks
AllowOverride None
Order allow,deny
Allow from all

</Directory>

The above code allow the total access to the folder /var/www/apps/static/. Like document root, never
put script which are executed in the server. This folder is commonly used for to serve the static content,
instead the document root, despite that both have de same permissions.

All the new directives must be added at the end of the file, before the last label of the file /etc/apache2/sites-
avaiable/000-default.conf.

The above listing allow total access of read to the folders and subfolders in /var/www/apps/static/,
but it is necessary to to one more step more. The access to other folders, different to the document
root, is given using alias. A alias is a word introduced inside the web address. Apache detect the alias
word and redirects to the associated folder. In the following listing there is an example:

Alias /static/ /var/www/apps/static/
<Directory /var/www/apps/static>

Options +Indexes
Order allow,deny
Allow from all

</Directory>

Alias /lib-js/ /var/www/apps/lib-js/
<Directory /var/www/apps/lib-js/>

Options +Indexes
Order allow,deny
Allow from all

</Directory>

The above listing give access to the /var/www/apps/static/ folder writing the address http://localhost/static/
in the web navigator.

On the same form, the above listing, give total access of read to the folder /var/www/apps/lib-js/,
writing in the web navigator the address http://localhost/lib-js/.

Cada proyecto se va a componer de dos partes: programación en el servidor, que serán ficheros
Python, y programación en el cliente (ficheros de imagen, CSS y JavaScript). La programación en el
servidor y en el cliente no se puede mezclar. Se usan carpetas separadas y proyectos de desarrollo
distintos. Por ejemplo, para un geoportal, denominado rutas-cheste, se crearía la siguiente estructura:

4

1.1 Introduction to Linux

In this course, each project will be divided in two parts: static content and script content. Each part
will be located in separated folders with different access permission. Each part will be a folder with the
same name, but in different location. For the static content will be used a project name folder inside
/var/www/apps/static/, and, for the scripts, it must be used the same name folder project but inside
the folder /var/www/apps/desweb/. In the following listing its sowed a example from a project called
ejemwsgi.

/var/www/apps/static/ejemwsgi/ /*Static content for the ejemwsgi
project*/

/var/www/apps/desweb/ejemwsgi/ /*Folder for the script files for
ejemwsgi project*/

La carpeta lib-js, se utilizará para poner librerías de terceros: OpenLayers, Jquery, ...

Project folder organization in this course

All the projects must be placed in the following folder:
/var/www/apps
Inside that folder, the project must have divided in two folders with the same name , one of them

must be placed in /var/www/apps/static/ and the the other in /var/www/apps/desweb/. In the following
listing its sowed a example from a project called ejemwsgi.

/var/www/apps/static/ejemwsgi/ /*Static content for the ejemwsgi
project*/

/var/www/apps/desweb/ejemwsgi/ /*Folder for the script files for
ejemwsgi project*/

The static part of the project is accessible with the url: http://localhost/static/ejemwsgi/. The dynamic
part of the project, the part which contains the scripts in python will be accessible with other Apache
alias, using the WSGIscriptAlias Apache directive. This alias allow the access only to one .py file, which
is the main file of the application. The Phyton application can be formed by many other .py files, but the
access must be granted only to the main .py file across the alias. The main file must import the rest of
the .py files which form the entire application. In the following listing are an example, where index.py is
the main file of the application.

Listado 1.1: Crear un alias para una aplicación WSGI

WSGIScriptAlias /ejemwsgi/ /var/www/apps/desweb/ejemwsgi/index.py

El listado anterior, la directiva WSGIScriptAlias indica a Apache que en las rutas donde aparexca
/ejemwsgi/, se redirecciona a /var/www/apps/desweb/geops/index.py y que es es un script WSGI, que
debe ejecutar mediante Python. Apache se queda esperando a que el la aplicación termine y le envíe
los resultados, en forma de texto, que Apache reenviará al cliente que hizo la petición.

The above listing indicates to Apache that, when Apache finds the string /ejemwsgi/ in a url, for
example in the url http://localhost/ejemwsgi/, Apache must execute the file /var/www/apps/desweb/-
geops/index.py. Really it is not Apache who execute the scripts. Apache send the script to the interpre-
ter, in this case Python. Apache waits the that Python finishes. When Pyhton finishes send a response
to Apache. Apache resend the Pyhton response to the client, which web navigator renders.

The Python script is a normal Pyhton script, then it is possible to access to many resources like
databases, any python library, or programs like R.

The technique of communication between Apache and Python is called WSGI. Then the we are
going to build WSGI applications.

We are going to use Liclipse IDE to develop. Liclipse uses workspaces to work. Each workspace
is the main folder where Liclipse creates each project. Each project is a new folder in the worspace
folder. In the virtual machine there are three Liclise workspaces created. One to work in the folder

5

1.1 Introduction to Linux

/var/www/apps/static/, other to work in the folder /var/www/apps/desweb/, and other to work in other
folder in inside /home/desweb/. To use the first two workspaces it is necessary to execute Lilcipse as
super user. In the first workspace the projects must be from Static web project type, and in the second
workspace, the projects must be from PyDev type. In the firs case the develop is in JavaScript, HTML5
and CSS languages, and in the second, the language of develop is Python.

Check a WSGI project

There is an example of WSHI application on the virtual machine. To check it you have to write in the
web browser http://localhost/ejemwsgi/.

Check the HTML code sent by the server to the client. To see the code press crl + u in the web
browser.

To see the Python part of the project, do the following:

Open a terminal: ctrl + alt + t.

Write sudo liclipse /*It is necessary to introduce la the administrator password each time sudo is
used. You must to knw that Linux do not shows anything when a password is introduced.*/

Chose the workspace /var/www/apps/desweb

Check the files form the project ejemwsgi. The file index.py.

To check the static part of the project:

Open an other terminal: ctrl + alt + t.

Write sudo liclipse.

Chose the workspace /var/www/apps/static

Check the files. In this case only there is a file css/estilos.css.

Python code of the WSGI application ejemwsgi

The only file of the project is index.py. Its content is showed in the following listing:

-*- coding: utf-8 -*-
’’’
Created on 12 de abr. de 2016
@author: Joaquín Gaspar Mora Navarro
’’’

#That will be necessary later
import sys, os
dir_base=os.path.dirname(__file__)
sys.path.append(dir_base)

#To debug
#sys.path.append(r’/opt/liclipse/plugins/org.python.pydev_4

.5.5.201603221237/pysrc’)
#import pydevd;

#To debug
#pydevd.settrace()

6

1.1 Introduction to Linux

def application(environ, start_response):

html="""
<!DOCTYPE HTML>
<html lang="es">
<head>

<meta charset="UTF-8"/>
<meta name="description" content="Asignatura Desarrollo Web

y Geoportales" />
<meta name="author" content="Gaspar Mora-Navarro" />
<meta name="keywords" content="máster, geomática,

geoinformación, upv, geoportal, mapserver, openlayers,
javascript"/>

<title>Ejemplo de aplicación wsgi</title>
<link rel="stylesheet" type="text/css" href="http://

localhost/static/ejemwsgi/css/estilos.css">
</head>
<body>
<h1>Desarrollo web y geoportales en Linux</h1>

<p>Funciona la app wsgi</p>
</body>
</html>
"""

#b=10/0#error para probar la lirería paste, de depuración

status = ’200 OK’
response_headers = [(’Content-Type’, ’text/html’),(’Content-

Length’, str(len(html)))]
start_response(status, response_headers)
return [str(html)]

#Descomentar para depuración. Volver a comentar para producción
#from paste.exceptions.errormiddleware import ErrorMiddleware
#application = ErrorMiddleware(application, debug=True)

Static code of the WSGI application ejemwsgi

In this case is only one CSS file, called estilos.css:

@CHARSET "UTF-8";
p {color:blue;}/*Los párrafos de color azul*/
h1 {color:maroon;}/*Los títulos H1 de color marrón*/

Check how both parts, static an dynamic, are connected because the WSGSI application sends the
html content to the client, and in this code, the static content is linked. Check the following line on the
Pyhton code and the code received by the client.

<link rel="stylesheet" type="text/css" href="http://localhost/static
/ejemwsgi/css/estilos.css">

The /static/ alias give access to the folder /var/www/apps/static/. Up to here the rest of the address
to the css file is specified in the url. The client, when read this line downloads the static files and uses,
the css files, to render the page, the js files are used to give functionality, and so on.

7

CAPÍTULO 2
HTML5, CSS y JavaScript

2.1 Technologies related with the developing and geoportals

Technologies related with the developing and geoportals

Base de datos: el componente más importante

Figura 2.1: Technologies related with the web develop and geoportals.

9

2.1 Technologies related with the developing and geoportals

Figura 2.2: Schema client-server.

10

2.2 HTML 5

HTML 5

New features from HTML 5

HTML 5 is a Hipertext Markup Language. The content is marked with labels. Each label wrap the
content, and web navigators shows the content depending on that labels. In HTML5, the appearance is
managed using external files called CSS (Cascade Style Seeds).

The main characteristics from HTM5 are:

There are new elements to define the structure, or the parts, from the page. The labels are: HEAD,
BODY, HEADER, FOOTER, NAV, SECTION y ASIDE, ARTICLE, TABLE (CAPTION, THEAD,
TBODY, TFOOT).

For the forms, the mos important is the new checks that now have the controls.

Has been added the possibility of GPS access and the camera of the device. For a more checked
access the PhoneGap or Cordova can be used. That libraries avoid the use of Java to access to
other services in the device.

Has been added a control to draw: CANVAS.

It is added the possibility of to store data in the client, up to 5 mb each page, with the new tools:
LocalStorage, sessionStorage and web Storage. That adds the possibility to store data off line, in
order to be sent to the server when there was internet connexion.

All the appearance of the page is managed using CSS external files, across the selectors.

Publicar una web

In order to have able to publish a page, the page have to be stored in a server connected to Internet,
and with a HTTP server installed. Personal computers have some problems to be used as a servers.
The reasons are: security against attacks, energy cuts, money in energy, and not fixed IP address. The
IP address can be transformed in fixed for free with some programs.

There are companies which rent servers where it is possible to install any software. They are called
dedicated servers. The operative system can be Windows or Linux. There are companies which allow
to have small a dedicate server for free.

Before the page is visible it is necessary to buy a domain to have an not numeric address. Visit the
DNS definition in the Wikipedia:
http://es.wikipedia.org/wiki/Domain_Name_System.

HTML 5 label classification

In this section it is going to list the most common labels. The student have to request more extensive
documentation to use the each label. The recommended page is https://www.w3schools.com/.

11

2.2 HTML 5

Labels for the structure of the page

The labels for the basic structure of the page are: DOCTYPE, HTML, HEAD Y BODY. The first line
of the document have to be always the following, which indicates to the web navigator that the page is
in HTML 5.

<!DOCTYPE HTML>

The HEAD label, wrap the metadata of the page. It is really important to fulfilling all the metadata
correctly, in order to be found by the searcher robots:

TITLE : Mandatory. Defines the title of the page.

BASE : Folder base to all the not completed addresses in the page.

LINK : Link CSS files.

SCRIPT : Wrap JavaScript code or link a external JavaScript file.

META : Page metadata. There are a lot of types of metadata: author, charset, keywords... The maxi-
mum number of metadata must be fulfilled.

STYLE Wrap the styles definition for the page. This is not recommended to use.

The BODY label enclose the real page content.

Label for the page structure inside the BODY

The structure of the page, inside the BODY, is defined with the following labels:

SECTION : Separate independent sections.

ARTICLE : Special for use in articles. Includes labels of metadata for the article, like summary, etc.

ASIDE : Is used to show complementary information like Links to pages, options or explanations. Is
located usually on the right or left side.

HEADER : Head of the page, section or article.

FOOTER : Foot of the page, section or article.

ADRESS : Is used to specify addresses of contact.

H1...H6 : Titles from more to less importance.

DIV : A division which enclose a part of the page to be managed. That label is the most commonly
used.

Text groups

To group text, there are the following labels:

HR : Line of horizontal separation.

PRE : Preserves the content format: spaces, tabs, lines...

BLOCKQUOTE : Used to mark the content of other authors.

FIGURE Y FIGCAPTION : Wrap a IMG label and adds metadata and title to the image.

UL, OL, LI, DL, DT, DD : Different type of lists.

12

2.2 HTML 5

Hipertext and semantics

Labels to define links, references, internal parts, labels to format text and labels to give mining.

A : To define hiperlinks to other content. Visit http://es.html.net/tutorials/html/lesson8.php.

ABBR : To specify what means an abbreviation.

B : Bold.

BR : Line break.

I : Italic font.

MARK : Highlights the content filling the characters.

Q : Introduces double quotation marks.

S : Cross out a text.

SPAN : Modifies the color of the text.

SUB : Enclose a sub-index.

SUP : Enclose a super-index.

TIME : Indicates that inside there is a date. Do not format different the date.

CITE, EM, DFN, STRONG, CODE, SAMP, KBD, VAR : Other special formats for the content.

Tablas

Las tablas son un elemento fundamental y se le han añadido cantidad de etiquetas que ayudan a
comprender el contenido.

Tables are a fundamental feature. More labels are been added to tables, in order to understand the
content of the tables.

TABLE : Starts the table.

CAPTION : Title.

TR, TD, TH : Row, column content and header.

THEAD : Encloses the headers of the columns.

TBODY : Encloses the content of the table.

TFOOD : Wrap the summary rows.

COLSPAN Y ROWSPAN : Are used to expand a cell.

13

2.2 HTML 5

HTML5 resources

HTML 5 page reference: http://www.w3schools.com/html/default.asp.
To check if the page does not have, errors the page http://validator.w3.org can be used.
The navigators not hold all the HTML 5 labels. In order to know if a web browser holds a label, you

can visit the page: http://caniuse.com.
Neither all the mobile devices hold all the HTML 5 labels. It is possible to check it in http://mobilehtml5.org.

Exercise 1. First steps with HTML 5

The objective for this Exercise is that the student be familiarized with the labels and the syntax of
HTML 5.

Do the following steps:

Create a new Liclipse project, from type Static web project, in the workspace /var/www/apps/sta-
tic. The project must be called prac1(1).

Inside the project folder, Lilipse creates a folder called WebContent. This folder must not be used.
In the root project folder, create a HTML file, called prac1.html.

Visit http://www.w3schools.com and search each of the labels sowed in this chapter. All the labels
must be used in the html file.

Añadir un alias al servidor web Apache, de forma que el alias /practica1/, muestre el documento
practica1.html. Add an alias alias /practica1/ to the server Apache 2. That alias mus show the file
prac1.html.

Remember restart Apache server to reload the new configuration.

Visit the page in the web explorer.

Delibery:
The student must show the page to the lecturer and to answer his questions.

Exercise 2. Creation of a web page with structure but without styles

The goal of this exercise is that the student understand the use of the structural labels of HTML 5:
HEADER, FOOTER, NAV, SECTION, ASIDE, LISTAS DE BOTONES, etc. The result will be not very
beauty because the page does not have still styles applied. That will be the next exercise.

The student have to use the identifiers used in the figure 2.7. This is important to apply styles later.
Do the next steps:
Create a new Lilipse static project called prac2, and a html document with the same name. It must

be created a page with the parts sowed in the figures 2.3, 2.4, 2.5 y 2.6, following that sequence.

(1)Forbidden to use spaces accents, jans for the name of the folders or files, inside /var/www/.

14

2.2 HTML 5

Figura 2.3: A NAV element in the HEADER and a ASIDE element in the BODY.

Figura 2.4: Main section and a subsection inside for the water wells

15

2.2 HTML 5

Figura 2.5: Section inside of the main section for the pipe data.

Figura 2.6: Footer, for the body, with the images which are links to other pages

16

2.3 Cascade style seeds. CSS

In the figure 2.3, in the HEAD element, it must be introduced the following labels: TITLE and META.
For the META label it is necessary to fill the following NAME: CHARSET, DESCRIPTION, AUTHOR y
KEYWORDS.

In the BODY the HEADER section must be created, and introduce a NAV element, which property
id=nav_principal. The content of this NAV are the lists which are sowed under the title Base de datos
dinámica POZOSSAN, in the figure 2.3.

The table which appears in the figure 2.5, must contain the labels CAPTION, THEAD and TFOOT,
in addition to the normal labels.

In the figure 2.6, is sowed the FOOTER, where there is a title and a navigation element NAV. The
NAV contains a list of UL elements with the images of the UPV and this school. The images contain
hyper-links to the respective pages.

In the figure 2.7, a schema is sowed. The navigator shows, up to now, the elements one over other.
The position an appearance will be manage later, using CSS.

Figura 2.7: Schema of the parts of the page.

Create an Apache alias in order to visit the page.
Delibery:
The student must show the page to the lecturer and to answer his questions.

Cascade style seeds. CSS

CSS indicates how the objects must be rendered in the web browser. CSS can be specified inside
the HTML or outside in separate files. The second option is the recommended. To apply styles to
elements, the elements must be selected. This is managed using selectors CSS.

Visit all the pages that are sowed in the following.

Reference page of CSS3: http://www.w3schools.com/css/default.asp. In this page are all the pro-
perties and the possible values, with examples.

The selectors list is in: http://www.w3schools.com/cssref/css_selectors.asp. The students have
to know the seventh first selectors.

17

2.3 Cascade style seeds. CSS

The CSS code can be checked in http://www.css-validator.org/validator.html.es.

The color elements can be checked in http://www.tutorialspoint.com/html5/html5_color_names.htm

Visit the page http://www.w3schools.com/css/css_syntax.asp and have a look the syntax. Check all
the examples in the page and do the four final exercises.

Watch the figure2.8, where it is possible to see a schema of properties which all the HTML elements
hace: margin, padding and border.

Figura 2.8: CSS cage model. Source: Tutorial of CSS from HTML.NET.
http://www.w3schools.com/CSS/css_boxmodel.asp.

Selectors to know:

Label selector: p, selects all the paragraphs.

Id selector: #map, selects only the element with id=map. This is the most specific selector.

Class selector: .grande. Selects all the objects which class=grande.

Class of etiqueta: div.rojo, selects all the div which class=rojo. Select several labels at time:
section, article, Selects the sections an the articles.

Select labels which are inside others: section article p, selects the paragraphs that are inside an
article, that are inside a section.

Combinations: section#principal article.guerra p, selects the paragraphs which are inside an arti-
cle, which classs=guerra, and which are inside the element id=principal.

In the following listing a example is presented. The result can be checked in the figure 2.9.

<!DOCTYPE html>
<html>
<head>

<style>
body {background-color: lightblue;}
h1 {color: white; text-align: center;}
p {font-family: verdana;font-size: 20px;}
.un_poco_mas_grande{font-family: verdana;font-size: 25px;

color: green;}

18

2.3 Cascade style seeds. CSS

#p1{font-family: verdana;font-size: 30px;color: red;}
</style>

</head>
<body>

<h1>My First CSS Example</h1>
<p>Párrafo normal.</p>
<p class="un_poco_mas_grande">Clase un poco más grande.</p>
<p class="un_poco_mas_grande">Clase un poco más grande.</p>
<p id="p1" class="un_poco_mas_grande">Clase un poco más grande,

pero modificado por un selector más específico.</p>
<p>Párrafo normal.</p>
<p>Párrafo normal.</p>

</body>
</html>

Figura 2.9: Style effect over the html objects.

Positioning elements in HTML 5 with CSS

As a full example of structured page, visit the address
http://upvusig.car.upv.es/static/dw_p2_css/p2_css.html. The page has the same elements and identi-
fiers that the used in the exercise 2, figura 2.7.

Copy the code HTML and CSS and create a new Liclipse static project. Link the CSS to the page
and comment and uncomment part of the CSS file to see the result on the page.

Over all it is important to know how to put the objects in the right position. Check the properties
float:left, float:right and clear:both from the objects. Using the property float it have been possible to
put the section cuerpo on the left of the object aside. The clear:both instruction clean all the objects
and make to use the full width to the element.

19

2.3 Cascade style seeds. CSS

Exercise 3. CSS.

Manage, using CSS, that the page create in the Exercise 2 have the appearance of the figure 2.10.
In this case you must use the Boostrap library https://www.w3schools.com/bootstrap/default.asp. This
library allows positioning the objects, but is responsible to the size of the screen from the device where
the page is being sowed. The student must experiment with the examples and, sowing the figure, solve
the exercise.

Figura 2.10: Object position and styles from the page using Bootstrap.

Ti solve the exercise it is necessary to add the following content to the CSS of the page:

/*
This is which do that all elements from a row have the same height

*/
.row {

display: -webkit-box;
display: -webkit-flex;
display: -ms-flexbox;
display: flex;

}

Delibery:
The student must show the page to the lecturer and to answer his questions.

20

2.4 Formularios HTML5

Formularios HTML5

To create forms also we are going to use the Bootstrap library. The student must to get the hand
with the available options:

Visit the page https://www.w3schools.com/bootstrap/bootstrap_forms.asp and check the three
possible forms available in Bootstrap: vertical, horizontal and inline.

Visit the page https://www.w3schools.com/bootstrap/bootstrap_forms_inputs.asp and try all the
examples.

HTML5 adds to the form controls the control of the user input data. In the figure 2.11 it is possible
to see the available restrictions.

Figura 2.11: User input available checks.

Práctica 4: formularios

Para que el alumno utilice los controles más comunes en HTML 5, se propone esta práctica. La
práctica consiste en crear una página con varios formularios, según la figura figura 2.12.

Todos los controles deben tener un tooltip de Boostrap de ayuda:

data-toggle="tooltip" title="Write a description"

El script que procesará el formulario debe ser: http://localhost/desweb/libro/webcontent/py/procFormRegistro.py.
El método de envío debe ser post. Pistas: buscar en internet los atributos de formulario onsubmit y met-
hod.

Nota: para el envío de formularios, se va a emplear funciones JavaScript y Ajax. Con esto se tiene
la ventaja de poder modificar los datos enviados y controlar la respuesta, además de realizarse la
operación en asíncrono.

21

2.5 JavaScript

Figura 2.12: Formularios con HTML5 y Bootstrap.

JavaScript

JavaScript is used to give interactivity to the pages. We are going to use JavaScript to:

Link events over objects to functions.

Show or hidden parts of the page.

Use OpenLayers and make pages with interactive maps.

Use JQuery in order to request information to the server.

Visit the following pages, and check the examples, in order to know the basis of JavaScript:

How to change html page objects: https://www.w3schools.com/js/js_intro.asp

Where to put the JavaScript code, how to create functions and how to connect events with fun-
ctions: https://www.w3schools.com/js/js_whereto.asp

JavaScript output possibilities: https://www.w3schools.com/js/js_output.asp. Get the develop tools
and check the console output.

Comments are really important.

//one line comment

/*

22

2.5 JavaScript

Several
line
comments
*/

//The recommended form to comment a function is the following
/**
* Change the message showed in the p_message element
* @method update_message
* @param {obj} obj_resp_json - object which have to has two

properties: ok and mensaje.
* ok can be true or false.
* @return none
*/
function update_message(resp_json){

var obj_resp_json=$.parseJSON(resp_json);
var obj_div=document.getElementById("div_message");
var obj_p = document.getElementById("p_message");
var cont;

if (obj_resp_json.ok) {
cont="Éxito! " + obj_resp_json.mensaje
obj_div.className = "alert alert-success";

}else{
cont="Problema! " + obj_resp_json.

mensaje
obj_div.className = "alert alert-warning";

}
obj_p.innerHTML=cont;

}

The JSon Format. We are going to use JSon format a lot because we are going to send and
receive JSon. Is the most used form to communicate whit the server. Check the format in
https://www.w3schools.com/js/js_json.asp

When events are linked to a functions, the page must have be loaded completely first. To ensure
this the window.onload event must to be used.

function init(){
document.getElementById("elemento").addEventListener("change",

funcion_ejecutar);
}
window.onload = function() {

init();
}

In the above listing, the function init only is executed when the document is completely loaded on the
web browser. The init function links the html event objects with the functions.

The next listings presents a JavaScript program which sum two numbers. The first listing shows the
html form definition. The second listing presents the code which do the necessary work. The result is
presented in the figure 2.13 .

<div id=div_sumar>
<form name="sumar" id="sumar">

<h2>Sumar dos números</h2>

23

2.5 JavaScript

<fieldset>
<legend>Números a sumar:</legend>
<label for="n1">Número 1: </label>
<input class="ancho_100px" required type="number" id

="n1" name = "n1"/>

<label for="n2">Número 2: </label>
<input class="ancho_100px" required type="number" id

="n2" name = "n2"/>
</fieldset>

<fieldset>

<legend>Resultado:</legend>
<label for="res">Suma: </label>
<input class="ancho_100px" required type="number" id

="res" name = "res"/>
</fieldset>

<div class="centrado">

<button type="button" id="calcular_suma" name ="
calcular_suma">Calcular</button>

<button type="reset" id="limpiar_suma" name = "
limpiar_suma">Limpiar</button>

</div>
</form>

</div>

Figura 2.13: JavaScript program to sum two numbers.

The JavaScript code of the program is the following:

function sumar(){
//This function is executed on click to the calculate button
var n1=Number(document.getElementById("n1").value);
var n2=Number(document.getElementById("n2").value);
var resultado=n1+n2;
document.getElementById("res").value=resultado;

}

function limpiar_suma(){
//This function is executed on change n1 or n2
document.getElementById("res").value="";

}

24

2.5 JavaScript

function init(){
//gets the html objects and links the events with the functions
document.getElementById("calcular_suma").addEventListener("click

", sumar);
document.getElementById("n1").addEventListener("change",

limpiar_suma);
document.getElementById("n2").addEventListener("change",

limpiar_suma);
}

window.onload = function() {
//Executes the init function when the page was completely loaded
init();

}

Exercise 5. JavaScript

The exercise has two parts. In the first part you have to do the following, figure 2.14:

Create a html document with a control input of type text, to can to introduce a text.

Add a button and a title H1.

On doing click over the button, the title content have to change. The new content have to be the
text introduced in the input of type text control.

You have to link the button click event with the function which makes the change. You have to use
the addEventListener of the object document.

The event link have to be done from a function which is executed automatically when the docu-
ment be loaded.

The JavaScript code have to be outside the html document.

Figura 2.14: Change the content of a html element.

In the second part you have to create a form to calculate XY coordinates from polar coordinates
figura 2.15. You have to make the following steps:

Create a document with the form of the figure 2.15. Use the Boostrap library to style the html
controls.

Use the onclick=radiar() attribute in the Calcular button definition to connect the event click with
the Calcular function. This is not the best way to do it but it is necessary to know. Somme times
it is necessary its use.

25

2.5 JavaScript

When a change is realized in the text box of input data, the previous calculated values are outda-
ted, until the Calcular button was pressed. The outdated data have to be deleted automatically
by using the change event on the text box of the input data. The change event of the four input
text box must be linked to a function in charged of clean the out text box. To do this, you have to
use the addEventListener method of the object document.

The link of the events with the functions have to be done from a function which have to be
executed when the page was totally loaded.

Before to try to do the calculation, the data input have to be checked. If a non valid input is gave,
an alert message have to be sowed before to try the calculation.

The JavaScript code have to be outside the html document.

Sow the development tools of the web browser. Put some debug stops and run the code, line
after line. Check the local variable values in the functions.

Figura 2.15: Point radiation application.

Useful code for the exercise:

//to access to a form element (f is the form element)
var v=f.elements.namedItem("valor_campo").value;

//To know if a control is empty
if (v==""){

//is empty
}

//To know if the content can be converted in a number (var num=
Number(text))

if ((v=="")||(isNaN(v)){
\\Is not numeric

}

Delivery:
It is not necessary to give any document. Only to show the page, make some calculations and

answer some questions.

26

2.5 JavaScript

GPS: Geolocation interface

It is very easy to access to the GPS of the devices using geolocation interface. The problem is that,
for security reasons the navigators disable the geolocation interface if in pages where the connection is
not secure, that is, SSL connections. Have a look to https://www.w3schools.com/html/html5_geolocation.asp

27

CAPÍTULO 3
IDE configuration and pozossan projects

installation

3.1 IDE configuration

IDE configuration

To work with OpenLayers it is necessary to have some data installed. That data have to be in a
PostGis database because our goal is to connect with PostgreSQL and update the database across
Internet.

A database is prepared to be restored, with a point an a line string layer. The database schema is
sowed in the figure 3.1

Figura 3.1: pozossan database relationship schema.

The database have to be restored in the computer of the student, and the pozos and tubsosanea-
miento have to be published with GeoServer, with WMS and WFS services. To do this visit
http://docs.geoserver.org/stable/en/user/gettingstarted/postgis-quickstart/index.html.

To download the database to be restored dowload the file 2017/pozssan_db/pozossan.backup in
the resources of the subject, in Poliformat. To restore the database:

Open PgAdmin, and create the database pozossan.

Over the database, right button and select the option restore, and select the backup file.

To publish the layers pozos and tubsosaneamiento with GeoServer, with WMS and WFS services,
visit
http://docs.geoserver.org/stable/en/user/gettingstarted/postgis-quickstart/index.html:

The workspace have to be called: pozossan

The data store have to be called: pozossan

The layers have to be called: pozos and tubosaneamiento

29

3.2 pozossan project installation

pozossan project installation

We are going to learn web develop with examples contained in a project. The project has about
2500 lines between html, python, css and js code. The code have been divided in small separate files.
The code is not going to be copied in this document. This document is going to do references to the
files of the project. Then the project have to be installed in the computer of the student and be working.

We are going to use one project:

A WSGI project, called dw_pozossan_sessions, accessible from the alias /pozossans/.

The project is in 2017/pozossan_web_projects/ in Poliformat.
This WSGI alias have to be created for the projects:

WSGIScriptAlias /pozossans/ /var/www/apps/desweb/
dw_pozossan_sessions/index.py

30

CAPÍTULO 4
OpenLayers 3.5

4.1 Configure JSONP in GeoServer

Configure JSONP in GeoServer

JSONP response is not enabled by default in Geoserver. To enable it some lines have to be uncom-
mented in the file
C:/GeoServer2.6.3/webapps/geoserver/WEB-INF/web.xml in Linux or
/var/lib/tomcat7/webapps/geoserver/WEB-INF/web.xml in Linux. That is already done in the virtual ma-
chine of the subject.

<context-param>
<param-name>ENABLE_JSONP</param-name>
<param-value>true</param-value>

</context-param>

JSONP is a request format which includes the name of the function which will receive the objects.
See the parameter callback in the url property in the next listing:

/*Capa WFS pozos*/
var vs_pozos = new ol.source.Vector({

loader: function(extent, resolution, projection) {
var url = URL_WFS_POZOSSAN + ’service=WFS&’ +

’version=1.1.0&request=GetFeature&typename=pozossan:
pozos&’ +

’outputFormat=text/javascript&format_options=callback:
lf_pozos’ +

’&srsname=EPSG:25830&bbox=’ + extent.join(’,’) + ’,
EPSG:25830’;

$.ajax({url: url, dataType: ’jsonp’, jsonp: false});
},
strategy: ol.loadingstrategy.tile(new ol.tilegrid.XYZ({

maxZoom: 19
}))

});

OpenLayers 3.5 map definition

To use OpenLayers it is necessary to load some libraries in the head of the page:

<!-- OPENLAYERS 3.5-->
<link rel="stylesheet" type="text/css" href="http://upvusig.car.upv.

es/lib-js/ol3.5.0/css/ol.css" >
<link rel="stylesheet" type="text/css" href="http://upvusig.car.upv.

es/lib-js/ol3.5.0/ol3-layerswitcher-master/src/ol3-layerswitcher.
css"/>

<script type="text/javascript" src="http://upvusig.car.upv.es/lib-js
/ol3.5.0/build/ol.js"></script>

<script type="text/javascript" src="http://upvusig.car.upv.es/lib-js
/ol3.5.0/ol3-layerswitcher-master/src/ol3-layerswitcher.js"></
script>

In the body, have to have a div which id=map. In that div the map will be draw.

<div id="map"></div>

The width and the height of the map are specified in the css file.

#map{width:100%;height:500px;background-color: #add8e6;}

To know how to load layers, to symbolize vector layers, etc, have a look to a the file ol_pozossan.js.

32

4.3 WMS geoserver Styles. SLD

WMS geoserver Styles. SLD

There are examples, in the file textitol_pozossan.js, to symbolize vector layers, but any to symbolize
WMS layers. WMS layers are not symbolized by OpenLayers, but GeoServer. Geoserver has powerful
tools to symbolize using SLD (Style Layer Definition) files. See the page
http://docs.geoserver.org/stable/en/user/styling/sld/cookbook/.

The student have to know how symbolize by field values, field ranges, label features, etc. There is
some examples in Poliformat, in the folder 2017/geoserver_styles.

One common task is to draw the same layer with different styles, for example to label different field
of the layer. In the next listing there is a example:

var red_wms_coste= new ol.layer.Tile({
source: new ol.source.TileWMS(({

url: URL_WMS_RED,
params: {"LAYERS": "alginet_red:red", "TILED": "true" ,’

STYLES’: ’alginet_red_coste’},
})),
title: "Coste del tramo"

});

var red_wms_axtype= new ol.layer.Tile({
source: new ol.source.TileWMS(({

url: URL_WMS_RED,
params: {"LAYERS": "alginet_red:red", "TILED": "true" ,’

STYLES’: ’alginet_red_axtype’},
})),
title: "Tipo de tramo"

});

33

4.4 Click, Selec, Draw and Snap interactions

Click, Selec, Draw and Snap interactions

You have documented functions of each map interaction in the following files. You have to know that
the interactions are linked. Some interactions need that other interactions be removed and an others
enabled.

The interactions select, modify, draw and snap are only applicable to a vector layers, not WMS
layers.

map_click.js: Manages the map click event.

map_select.js: Functions to add and remove the select interaction. Select interaction is linked to a
function which manages the event selection object. Inside the event selection object there are
properties like the vector of elements selected. The function wich manages the select event is
opera_seleccion, wich is in the file manage_map_selection.js.

map_modify.js Functions to add and remove the modify interactions. Needs that the select interaction
be activated first.

map_draw.js: Functions to add and remove the select draw interactions.

map_snap_pozos.js: Functions to add and remove the snap to the pozos and tubos layer.

map_config.js: Functions which configure the interactions on the map. Are triggered by the click on
the radio buttons of the page.

The link of the events with the functions and the execution of the functions to initialize the application
is made from the file inicializar.js.

Exercise 6. Map drawing and modify.

The student already can advance his own project with this exercise, as long as to adds all the fun-
ctionalities that are demanded here. In the student final geoportal, it is possible that the all the functio-
nalities demanded here do not be applicable. The student then will have able disable that functionalities
not applicable.

Follow the following steps:

Create a new PostGis database.

Add a polygon table, with some fields: area, perimeter, value, data, ...

Add a linestring table with some fields. Add the field width.

Add a point table with some fields.

Create a map with some base layers. For Spain you can use the PNOA and Cadastre layers...
Remember to use the same SRC for the layer in OL3 than the used to create the polygons table,
in order to avoid reprojections.

Add the tables as WFS layers to a map.

Label at least one WFS layer by one field of the layer.

34

4.5 Exercise 6. Map drawing and modify.

Add a WMS layer from the table of lines. The line width of the lines will be in function of the with
field value of the table. The widths have to be classified in three ranges. This have to be made
with SLD symbology in Geoserver.

Add select, modify, draw and snap interactions. The user have to have a three radio buttons to
chose the action: select, draw or modify.

Only will draw polygons.

While drawing or modifying, the snap to the polygons layer have to be active.

The elements drew have to belong to a new vector layer.

On each selection the coordinates of the polygon selected have to be showed in a text area
control.

All the new elements drew are temporal. Do not are in the database. If you reload the page,
the temporal elements will be deleted. Put a button to clean the temporal layer, in order not to
have to reload the page to clean de map. To do this you will find a example at the end of the file
ol_pozossan.js.

Add the layer switcher control.

Add the cursor coordinates to the map.

Delibery:
The student must show the page to the lecturer and to answer his questions.

35

CAPÍTULO 5
Dynamic sites with Python and WSGI

5.1 Before start programming with Python

The server programming part, called backend, its going to be done with Python 2.7, with WSGI
applications. One application WSGI is a Python program connected to Apache server with a WSGI
directive. Apart of this is a normal Python program.

Python in Linux has some differences with Windows. The folder c:/python27/lib/site-packages in
Windows is located in /usr/lib/python2.7/dist-packages in Linux. Our new common Python libraries have
to be placed in a package in this folder. Later it is necessary to grant read permission to the group www-
data in this folder, in order to allow Apache to read it. The dweb library, which will be used later, is already
in /usr/lib/python2.7/dist-packages and have all the permission granted.

Before start programming with Python

Debugging Python code. File error.log

If the navigator shows 500 server error, means that there is a error in the Python server code. In
this cases it is necessary to see the file /var/log/apache2/error.log, where, in the last lines, the error
description in written.

Mostrar errores en el navegador

The paste Python library (https://pypi.python.org/pypi/Paste), writes the error in the web browser,
and avoids to have to open the file /var/log/apache2/error.log. This library is already installed in the
virtual machine of the subject.

This library only have to be used in the case of develop, not in production.
To use the library two lines have to be written bellow the wsgi function:

def application(environ, start_response):
wsgi code
return str(html)

#Uncoment to debug. Comment to production
from paste.exceptions.errormiddleware import ErrorMiddleware
application = ErrorMiddleware(application, debug=True)

Remote debugging with PyDev

In general, it is necessary, each time the Pyhton code be changed, restart de Apache service. In
some cases you will not know what is going wrong in the server code, despite the error messages. In
this cases, it is necessary to stop the execution in a line of code and execute the code line after line,
seeing the variable values. This is remote debugging.

To remote debug with PyDev:

Add, where you want stop the execution, the instructions of the following listing:

#import sys;sys.path.append(r’/opt/liclipse/plugins/org.
python.pydev_4.5.5.201603221237/pysrc’)

#import pydevd;pydevd.settrace()

Simply writing pydevd, Liclipse writes the rest of the sentences.

In the Debug perspective, run the PyDev server.

Execute the page with a web browser.

With the before steps, the execution is stopped in the line under pydevd.settrace() sentence, and it
is possible to advance line by line in the code, seeing the variable values.

37

5.2 WSGI application example: dw_wsgi_example

Importing modules from a WSGI application

Suppose that you have a module called m1.py, and other module called m2.py, inside the package
py. The py package in where the module m1.py is. The following import will work in a normal python
program;

from py import m2

The above import works with standard Python, but not with WSGI applications, due to that the path
to m1.py is not added to a the pythonpath variable. It is necessary to do it manually:

import sys, os
DIR_BASE=os.path.dirname(__file__)
sys.path.append(DIR_BASE)

Now from py import m2 will work because the path to m1.py module in the pythonpath, and the py
package is in the folder where m1.py is. The above listing have to be added in all the principal wsgi
modules, usually called index.py.

WSGI application example: dw_wsgi_example

Create with Liclipse a PyDev project called dw_wsgi_example, inside the workspace c:/ms4w/apps/desweb.

Pay attention in that Liclipse creates a module called __init__.py. This module converts the folder
dw_wsgi_example in a package.

Create the module of the wsgi web application. The module have to be called index.py, despite
that the name can be any and the extension also any.

Create a package, called py. This package will have Python modules that will be loaded from the
wsgi application.

Create an alias for Apache, /dw_wsgi_example/, to load the page with the url: http://localhost/dw_wsgi_example/.

Create the wsgi application index.py

Paste in the index.py file the following code:

-*- coding: utf-8 -*-
"""
Created on 12 de abr. de 2017
@author: Joaquín Gaspar Mora Navarro
"""

#this is necessary to have able to import other modules Python
import sys, os
dir_base=os.path.dirname(__file__)
sys.path.append(dir_base)

#global variable used to indicate if we are developing or not
DEBUG=True

def application(environ, start_response):

html="""
<!DOCTYPE HTML>

38

5.2 WSGI application example: dw_wsgi_example

<html lang="es">
<head>

<meta charset="UTF-8"/>
<base href="http://localhost/static/dw_wsgi_example/"/><!--

Directorio base para las rutas a los archivos de esta página
-->

<meta name="description" content="Asignatura Desarrollo Web y
Geoportales" />

<meta name="author" content="Gaspar Mora-Navarro" />
<meta name="keywords" content="máster, geomática, geoinformación

, upv, geoportal, mapserver, openlayers, javascript"/>
<title>Geopotal de la base de datos POZOSSAN</title>
<link href="css/estyles.css" rel="stylesheet" type="text/css

"><!--Indica cómo se muestran los elementos y su distribución
-->

<script type="text/javascript" src="js/code.js"></script>
</head>
<body>

<div id="div1">
<p>This is the content of the div1</p>
<p>This is the content of the div1</p>
<p>This is the content of the div1</p>
<p>This is the content of the div1</p>

</div>
<div id="div2">

<p>This is the content of the div2</p>
<p>This is the content of the div2</p>
<p>This is the content of the div2</p>
<p>This is the content of the div2</p>

</div>

<button id="show_div1">Show div1</button>
<button id="show_div2">Show div2</button>

</body>
</html>
"""

#Envío al servidor. Siempre igual.
status = "200 OK"
response_headers = [("Content-Type", "text/html"),("Content-

Length", str(len(html)))]
start_response(status, response_headers)
return [str(html)]

if DEBUG:
from paste.exceptions.errormiddleware import ErrorMiddleware
application = ErrorMiddleware(application, debug=True)

The project uses two static files: js/code.js and css/styles.css, with are locates because the label
<base> from the <head> section. It is necessary to create a static Liclipse project, called dw_wsgi_example/.
In the folders js and css paste the following content:

File css/styles.css

@CHARSET "UTF-8";

39

5.3 Divide and you will win

#div1{background: green}
#div2{background: blue}

File js/code.js

function show_div1(){
document.getElementById("div1").style.display = "block";
document.getElementById("div2").style.display = "none";

}

function show_div2(){
document.getElementById("div1").style.display = "none";
document.getElementById("div2").style.display = "block";

}

function init(){
//web section navigation. File: section_navigation.js
document.getElementById("show_div1").addEventListener("click",

show_div1);
document.getElementById("show_div2").addEventListener("click",

show_div2);
}

window.onload = function() {
init();

};

In this simple wsgi application you have many important things: one part, in Python, that generates
the html string that is sent to the client. That string is a complete html page. Pay attention that, in the
<head>section there are several links to the static part of the project: js/code.js, and css/styles.css.
Apache has access to that files because the <base> label, which uses the /static/ alias, that drives
Apache to the folder /var/www/apps/static/.

The WSGI applications have always a point of entry, which is the function application, in the file
index.py. The application function receives two parameters, which will be described later.

Check the applicartion: http://localhost/dw_wsgi_example/
The js code shows or hides the <div>elements from the html code. This is the technique frequently

used to navigate by the page. The full page is sent to the client, and the adequate sections are sowed
in depending of the menu option selected.

You can download the application in Poliformat, in the resources of the subject, in 2017/ejem-
plos_clase/wd_wsgi_example.zip.

Divide and you will win

Programming is a challenge of organization. Is you arrive to a point where you can not extend the
program, or the cost in do it is too big, is because the program is not well organized. A good organization
requires the division of the project in many independent, small parts. This is the key.

In the following project a way of how to divide the HTML code is presented: sections and forms.
Each part is a independent file. All the files are joined in one file called base.html. In the following listing
a base file example is showed:

<!DOCTYPE HTML>
<html lang="es">
<head>

40

5.3 Divide and you will win

{{head_content.html}}
</head>
<body class="container">

{{header.html}}
<section id="sec_mapa">

<row class="row">
<aside id="aside_izquierdo" class="col-xs-3">

{{div_form_ini_session.html}}
</aside>
<section id="sec_cuerpo" class="col-xs-7">

<div id="map"></div>
</section><!--cuerpo-->
<div id="div_aside_principal" class="col-xs-2">

{{aside_principal.html}}
</div>

</row>
</section><!-- sec_mapa -->

</body>
</html>

This technique is copied from the Django framework. Django call this separate html files templates.
Actually is a substitution string technique. The content of the base.html file is loaded in a string, and the
{{file_names.html}} sub strings are replaced by the real content of the corresponding file. The result is
one big html file divided in small separate files, and joined in the base.html file.

To facilitate this division in small files, in the dw_pozossan_sessions project, in the templates pac-
kage is the mount_page.py module, which do precisely that. Receives the base file name y a list of
strings, which represent folders. The mount_page function loads all the files and search the name of
each file in the base file. If there is a match replaces the file name by the file content. In the following
listing there is a example:

dir_base=os.path.dirname(__file__)
base_file=dir_base + ’/sections/base.html’
print base_file
sections=dir_base + ’/sections’
forms=dir_base + ’/forms’
list_folders_templates=[sections,forms]
html=mount_page(base_file,list_folders_templates, False,’’)
print html

In the figura 5.1 you can see the folder and file structure.
In the resources of the subject, in Poliformat, in the folder ejemplos_clase, there is the file mount_page.zip,

ready to be checked. This is not a wsgi application is a normal Python program.
The function mount_page uses other functions, which are installed in a module called dweb, insta-

lled in the package dweb, which is in the dist-packages folder, in the virtual machine of the subject.

41

5.4 Exercise 7. Division of a HTML page in small parts

Figura 5.1: Division of a page in small files.

Exercise 7. Division of a HTML page in small parts

The student already has to work with his own project and apply this exercise. It consists in to divide
the web page in small parts, the parts which the student think: sections, forms, head, header, footer, ...
To do it:

Create a wsgi project.

Create a folder called templates, and inside two sub folders secctions and forms.

Divide the page in parts, the parts which the student think: sections, forms, head, header, footer,
...

The page has to have a navigation menu and, on click over it, different sections have to appears
and disappears. You have to use the technique style.display, used in the section sección 5.2.1,
página 38.

Has to have at least a form in the page, to the session initialization. It has to have a option in the
menu to sow or hide the form. .

The page has to have a OpenLayers map. This map could be the map created in the before
exercise.

Has to have a help section. When the help option in the menu be clicked, the map section disap-
pears an the help section appears.

Delivery: You have to sow the project working to the teacher and answer some questions.

Send and process GET data in a wsgi application

Manage GET data in the urls

The data specified in the urls is caller GET data.
In many occasions hiperlinks are used on order to show different parts of the page. For example:

http://www.site.com/alias/?option=init, or http://www.site.com/alias/?option=init-session.
As you see, in both cases the same alias is used in the url. That means that the same wsgi appli-

cation will be executed. Inside of, wsgi function, in the file index.py, the chosen option is obtained and

42

5.5 Send and process GET data in a wsgi application

the adequate answer is generated. To know the chosen option the package urlparse is used, able in the
Python 2.7 standard installation. In the following listing a use example is showed:

C:\Postgres91\bin>python
Python 2.7.2 (default, Jun 12 2011, 15:08:59) [MSC v.1500 32 bit (

Intel)] on win32
Type "help", "copyright", "credits" or "license" for more

information.
>>> import urlparse
>>> a=urlparse.urlparse("http://localhost/geops/?aplicacion=inicio")
>>> print a
ParseResult(scheme=’http’, netloc=’localhost’, path=’/geops/’,

params=’’, query=’aplicacion=inicio’, fragment=’’)
>>> a.scheme
’http’
>>> a.query
’aplicacion=inicio’
>>> b=urlparse.parse_qs(a.query)
>>> b
{’aplicacion’: [’inicio’]}
>>> b[’aplicacion’]
[’inicio’]
>>> b[’aplicacion’][0]
’inicio’
>>>

In the following code a function which returns a Python dictionary with the values of a GET request.
This is the method commonly used in the hyperlinks with parameters: http://www.site/alias/?variable1=value1&variable2=value2...

The environ parameter is given by Apache to the wsgi function application. Inside the environ para-
meter there are a lot of information: the GET string, IP of the client. web browser name, ...

from urlparse import parse_qs #librería estándar de python
def devuelve_dict_get(environ):

qs = environ[’QUERY_STRING’]
d=parse_qs(qs, True)#el parámetro opcional true conserva los

valores en blanco
#la llave estará pero vale ’’

return d

The use of the above function is as is sowed in the following listing. In the next example the url
http://www.site/script/?variable1=value&variable2=value2 is passed to the server.

from dweb import dweb
d=dweb.devuelve_dict_get(environ)
print d
{’variable1’:[value1],’variable2’:[value2]}

print d[’variable1’][0]
value1

The function devuelve_dict_get resturns a normal Python dictionary. Note that the values of each
key are inside a list, then, to access to the values, you have to access to the element 0 in the list
(d[”variable1“][0]).

To extract the values from the dictionary is better to use the method get, that all Python dictionaries
have, because d[”variable1“][0] raise a error in the case the key ”variable1“ does not exist. See the
following code:

43

5.5 Send and process GET data in a wsgi application

from dweb import dweb
d=dweb.devuelve_dict_get(environ)
print d
{’variable1’:[valor1],’variable2’:[valor2]}

print d[’variable555’][0]
Error the key ’variable555’ does not exists in the dictionary d

The get method in the dictionaries allows, in the case of the key does not exist, to return an other
specified values in the method. See the following example:

from dweb import dweb
d=dweb.devuelve_dict_get(environ)
print d
{’variable1’:[value1],’variable2’:[value2]}

print d.get(’variable555’,[’’])[0]
Returns ’’ without error, because the key ’variable555’ does not

exists

Server data send from html, using GET method

In the urls you can send data to the server using keys and values. This method of data send is called
GET. This keys and values, in the url, indicate to the server what the client wants. For example, you can
send to the server the variable operation, specifying one of the values insert, select, update or delete.
The wsgi application retrieves the opetation variable value, and executes a function that generates the
adequate answer. See the following url examples:

- To insert a reccord
http://localhost/myalias/?operacion=insert&tabla=d.empleados&pk_name

=id®istro={nombre=juan, dni=25252525}

- Para seleccionar un registro
http://localhost/myalias/?operacion=select&tabla=d.empleados&pk_name

=dni&pk_value=25252525&campos={id, nombre,dni}

- Para editar un registro
http://localhost/myalias/?operacion=update&tabla=d.empleados&pk_name

=dni&pk_value=25252525®istro={nombre=felipe}

- Para borrar un registro
http://localhost/myalias/?operacion=delete&tabla=d.empleados&pk_name

=dni&pk_value=25252525

Example of processing GET data in order execute the adequate Python function

In the server myalias, indicates Apache which wsgi application to execute. In the wsgi application, to
decide what to do in the case of each url of the previous section (5.5.2), it is necessary to do something
like:

import json#to make json strings from python dictionaries
from dweb import dweb
from py import operations

def application(environ, start_response):
dic_get = dweb.devuelve_dict_get(environ)

44

5.6 Manage JSON strings

operacion=dic_get.get(’operacion’,[’’])[0]
tabla=dic_get.get(’tabla’,[’’])[0]
pk_name=dic_get.get(’pk_name’,[’’])[0]
pk_value=dic_get.get(’pk_value’,[’’])[0]
registro=dic_get.get(’registro’,[’’])[0]
campos=dic_get.get(’campos’,[’’])[0]

#in the case in which a key of the dictionary does not exists in
the dictionary, the value will be ’’, but any error is

generated

if operacion==’insert’:
resp_json=operations.insert(tabla,pk_name,registro)

elif operacion==’select’:
resp_json==operations.select(tabla,pk_name, pk_value, campos

)
elif operacion==’update’:

resp_json==operations.update(tabla,pk_name, pk_value,
registro)

elif operacion==’delete’
resp_json==operations.delete(tabla,pk_name, pk_value)

else:
d={}
d[’ok’]=False
d[’json’]=’vacio’
d[’mensaje’]=’<p>Any valid operation</p>’
resp_json=json.dumps(d)

status = ’200 OK’
response_headers = [(’Content-Type’, ’text/html’),(’Content-

Length’, str(len(resp_json)))]
start_response(status, response_headers)
return [str(resp_json)]

Manage JSON strings

In the previous listing is introduced a new important element: the send of json answers to the client.
A json answer is a string that inside has a dictionary key: value. From JavaScript it is possible to convert
json strings to objects. That objects have properties which are called like the keys of the json dictionary,
and the values of that properties are the values of the json dictionary. This technique, the json strings,
allow multiple data send to the client in each answer.

In the next listing a example is presented:

Listado 5.1: Crear cadenas json con python

import json#to make json strings from python dictionaries

d={}
d[’ok’]=False
d[’json’]=’vacio’
d[’mensaje’]=’<p>Any valid operation</p>’
resp_json=json.dumps(d)

45

5.7 Sending data to the server and to receive data from the server with Ajax

In the above example, a Pyhton dictionary is created. This dictionary is converted in a json string.
This string is stored in the resp_json variable, whic will be send to the client. The content of the
resp_json variable is:

"’ok’:False,’json’:’vacio’,’mensaje’:’<p>Any valid operation</p>’"

Is a json string is received in the client, with JavaScript it is possible convert it into a object. In the
following code, a example is showed:

Listado 5.2: Convert json string to object in JavaScritp

function functionWichReceivesTheAnswer(resp_json){
var obj_resp_json=$.parseJSON(resp_json);//$ mins JQUERY. It is

necessary to load JQUERY library before
//access to the field values
alert(obj_resp_json.ok);//shows False
alert(obj_resp_json.mensaje;//shows ’Any valid operation’

}

From the same form, it is possible to send a string to the server from JavaScript. To create a json
string with JavaScript:

var str_json= ’{"field1":"value1","field2":"value2"}’

When a json is received from Python, it is possible to convert it into a Python dictionary. In the
following code there is an example:

Listado 5.3: Convertir cadena json en diccionario con Python

import json#to make json strings from python dictionaries
var dic_json= json.loads(’{"field1":"value1","field2":"value2"}’)
print dic_json["field1"]

A very common operation is to have to create a json string whit all the values of a HTML form. This
task can be done easily with the function formToJSONString. This function is in the file general_code.js
in the dw_pozossan_sessions project.

Sending data to the server and to receive data from the server with Ajax

Ajax allows to send data to the server and to retrieve data from the server, without to send or receive
the complete page. In addition, is executed on asynchronous form, that is, while the page is sending
and receiving data, the page is not locked, continues working.

The library JQuery has to be loaded (https://jquery.com). To load this JavaScript library, you have to
write in the head of the document:

<script type="text/javascript" src="http://code.jquery.com/jquery
-2.1.3.min.js"></script>

In the section 5.5.2, it was sowed how to send data to the server using urls. This can be done with
hiperlinks:

<a href="http://localhost/myalias/?operacion=select&tabla=d.
empleados&pk_name=dni&pk_value=25252525&campos={id, nombre,dni}">
Seleccionar el empleado DNI=25252525

On pressing over the hiperlink, the GET request in sent, and the server generates a answer which
could be showed in a new page. This is not very useful. The correct form is to have able to send data
to the server, then the server do the tasks requested and send the answer to the client. The client, on
the other hand, once received the answer, instead of change the complete page, makes the changes in

46

5.7 Sending data to the server and to receive data from the server with Ajax

the same page. Therefore, the user could not lock the page, that is, all this process have to be done in
asynchronous mode. All this process is what Ajax do. Ajax is a method of the JQuery JavaScript library.

The Ajax syntax is the following:

var URL="http://localhost/myalias/?";
var datos="operacion=select&tabla=d.empleados&pk_name=dni&

pk_value=25252525&campos={id, nombre,dni}"
$.ajax({

type: "GET",//mode of sending data. Can be ’GET’ or ’POST’
url: URL,//url where the data is sent
data: datos, //This is the data sent to the server.
success: update_message //function that will receive the

data answer, and will be executed when the data will be
received

});

The function update_message will be execute on automatic form. That function have to receive one
parameter, which is the server answer. Usually the response will be a json string. In the following listing
there is an example:

/**
* Change the message showed in the p_message element, and the color

from the div whic contains the p_message element, called
div_message

* @method update_message
* @param {obj} obj_resp_json - object which have to has two

properties: ok and mensaje.
* ok can be true or false.
* @return none
*/
function update_message(resp_json){

var obj_resp_json=$.parseJSON(resp_json);
var obj_div=document.getElementById(’div_message’);
var obj_p = document.getElementById(’p_message’);
var cont;

if (obj_resp_json.ok) {
cont=’Éxito! ’ + obj_resp_json.mensaje
obj_div.className = "alert alert-success";

}else{
cont=’Problema! ’ + obj_resp_json.mensaje
obj_div.className = "alert alert-warning";

}
obj_p.innerHTML=cont;

}

In the Poliformat subject resource, in 2017/ejemplos_clase/dw_ajax.zip, there is an example. Install
the example and check how it works. In order the example cloud work, you have to create the Apache
alias /dw_ajax/ for the wsgi application.

47

5.8 Exercise 8. Ajax

Exercise 8. Ajax

The student have to do the following tasks in his own project, or in a new project. The goal is that
the student could learn:

To send json strings to the server with Ajax.

To process GET request from the server.

To generate json answers from the server.

To receive the json server answer in a JavaScript function and make change in the page.

The communication client-server by using Ajax-json is the most important knowledge in this subject.
In the next exercise the student will make changes in the data base with the data of the forms in

this Exercise. Then, the student have to be organized and to try that this Exercise be useful to his own
project or the next exercise.

Create a new WSGI application, or use the application of your own project, and divide the HTML
code in different HMML files.

One of the HTML files have to have a HTML form.

The application, on the firs time that the client request the page, have to send the complete page.

You have to create operations, in the wsgi application, in order to the application reacts to the GET
requests. At least have to have one operation that call to one Pyhton function that manage the
form. In the GET data, of the request that the page sends to the server, have to be the operation
name, the form name and the data form. The data form have to be sent to the server, in the GET
data of the request, in a string json format.

To create the json string with the form data in JavaScript, you have to use the function formToJ-
SONString. That function makes the task for you. The formToJSONString functionis in the file
general_code.js of the project dw_pozossan_sessions.

The server have to do some operation whit the form data, therefore you have to use the Python
json library, in order to transform the json string of the form data, received by GET, in a Python
dictionary. The server have to do some operation with the form data, in order the teacher has
able to know that the student knows to process the form data. You can transform the form data
to upper-case, to sum some values,... In the next exercise, this data form will be used to insert,
update or delete some row in the database.

Once processed the data form in the server, you have to generate a Python dictionary, with
several fields, and send it to the client in a json string.

In the client side, from JavaScript, you have to process the json string received from the server,
transform it in a object, and give messages on the page with the data answer.

Para el envío de los datos al servidor y la gestión de la respuesta, se debe usar Ajax, o la función
mi_ajax, contenida en el archivo mi_ajax.js del proyecto dw_pozossan_sessions.

To send the data to the server, and the server answer management, you have to use Ajax, or the
function textitmi_ajax, from the file mi_ajax.js from the project dw_pozossan_sessions.

48

5.9 To make changes in PostgreSQL with Pyhton. Use of the psycopg2 library

For example, you can send a form which match with the d.edificios (d.buildings): a description,
the geometry type (always Polygon), and the polygon complete string coordinates x,y,x,y, ..., in the
OpenLayers format. In the server, you transform the description field to upper-caps and transform the
coordinates into PostGis format: x y, x y, ... You have to build a dictionary with the transformed data,
transform it into a json string and send it to the client. The client shows the same values, in the same
form, but transformed by the server (upper-caps, and the transformed string coordinates).

Para cargar una cadena json en un formulario, leer la sección 5.10.2 55. To load into a form a json
string whit the form data, see the section 5.10.2, page 55.

To make changes in PostgreSQL with Pyhton. Use of the psycopg2 li-
brary

To make queries or changes in a PostgreSQL database with Pytjon, we are going to use the psy-
copg2 library,http://initd.org/psycopg/. This is the penultimate step to complete the student training: to
make changes in a spatial database.

Lo primero que hay que hacer es configurar psycopg2 para que, ya que nuestras bases de datos
están en UTF8, que nos devuelva las cadenas con esa codificación.

The first you have to do is to configure the psycopg2 library, because our databases are in UTF8
coding:

import psycopg2
import psycopg2.extensions
psycopg2.extensions.register_type(psycopg2.extensions.UNICODE)
psycopg2.extensions.register_type(psycopg2.extensions.UNICODEARRAY)

Now you can connect with the pozossan database:

database=’pozossan’
user=’postgres’
password=’postgres’
host=’localhost’
port=5432

#conexion
conn=psycopg2.connect(database=database, user=user, password=

password, host=host, port=port)

The constructor of the object connect created a object, which has been denominated conn. This
object has a property, called cursor, which is an other object which allow to send SQL queries to the
database.

cursor=conn.cursor()

With the cursor, it is already able to send SQL sentences to the database. The sentences can have
parameters or not. If the sentence does not have parameters then is a normal string. In the following
examples, it is assumed that the variables conn y cursor have been created before as global variables.

49

5.9 To make changes in PostgreSQL with Pyhton. Use of the psycopg2 library

Table creation

In the following example a table is created from Python code:

def crea_tabla(nom_tabla):
"""
The queries where there are not field values are created with

strings’ normal techniques
"""
sql_tabla="create table {0}(gid serial primary key, descripcion

text, area double precision)".format(nom_tabla)
sql_geom="select addgeometrycolumn(’d’,’{0}’,’geom’,25830,’

POLYGON’,2, true)".format(’edificios’)
print ’Creando la tabla’
print sql_tabla
print ’Añadiendo columna de geometría’
print sql_geom
cursor.execute(sql_tabla)# adds the sentence to the transaction
cursor.execute(sql_geom)# adds the sentence to the transaction
conn.commit()# executes the transaction. IT IS NECESSARY. IF NOT

NOTHING WILL CHANGE IN THE DATABASE

As you can see in the above listing, after each sent sentence, it is necessary to call the method commit
from the object conn, in order to make the changes in the database. If you do not call this method, any
change will be done in the database.

On executing the crea_tabla function, the following result is obtained.

Creando la tabla
create table d.edificios(gid serial primary key, descripcion text,

area double precision)
Añadiendo columna de geometría
select addgeometrycolumn(’d’,’edificios’,’geom’,25830,’POLYGON’,2,

true)

In the previous function, and in the following ones, it is going to be used variables with table names,
field names and field values. The field values usually are also parameters of the functions. This is
done like that in order to the student learn how it is done, being that, without using this techniques it is
impossible to automate nothing.

When you have finished of using the connexion, it is very important to close it, to not to use resour-
ces on the server:

cursor.close()
conn.close()

Once the connexion is closed, the variables cursor ni conn can not be used any more.

To insert rows with geometry

In the following listing, a form of to insert geometries in tables with a field geometry is presented.
The trick consists in to use the PostGIS function st_geometryfromtext, and transform the geometry, in a
text coordinates, to a valid column geometry type. The previous function also needs the SRC, specified
in the EPSG code:

st_geometryfromtext(geometria_en_texto, EPSG)

In the following listing a function that inserts building’s geometries, int the previously created table
d.edificios, is presented:

50

5.9 To make changes in PostgreSQL with Pyhton. Use of the psycopg2 library

def inserta_poligonos(nom_tabla, descripcion, pol_wkt):
"""
The queries where there are field values are generated with the

same system, using string, but you NEVER have to specify the
values inside the string. You have to put ’%s’ instead the
real field value. The field values are specified in a vector
as a second parameter of the execute function

"""
cons_ins=’insert into {0} (descripcion,geom) values (%s,

st_geometryfromtext(%s,25830))’.format(nom_tabla)
print ’Insertando polígono’
print cons_ins
cursor.execute(cons_ins,(descripcion,pol_wkt))
conn.commit()

As you can see in the above listing, the field values position are specified in the string query,
using%s. The real values are specified as second parameter of the execute method, inside of a list
or tuple. The execute method introduces the real values in the query string, replacing each%s by his
real value.

In the next listing a function use example is showed:

Pay attention in that, in the case of polygons, the last point
have to be the same as the first

p1=’POLYGON((727844 4373183,727896 4373187,727893 4373028,727873
4373018,727858 4372987,727796 4372988,727782 4373008,727844
4373183, 727844 4373183))’

p2=’POLYGON((727988 4373188,728054 4373192,728051 4373093,727983
4373093,727988 4373188))’

inserta_poligonos(’d.edificios’,’Primera descripcion’, p1)
inserta_poligonos(’d.edificios’,’Segunda descripcion’, p2)

The execution of the above listing generates the following result:

Insertando polígono
insert into d.edificios (descripcion,geom) values (%s,

st_geometryfromtext(%s,25830))
Insertando polígono
insert into d.edificios (descripcion,geom) values (%s,

st_geometryfromtext(%s,25830))

Updating rows

In the following listing a example of how to update rows is sowed. The listing present a function
which updates de area field of the buildings table. The function is a example of how to build queries
dynamically, using variables which contain the name of tables and fields.

def actualiza_areas(nom_tabla,nom_campo_area, nom_campo_geom):
cons=’update {0} set {1}=st_area({2})’.format(nom_tabla,

nom_campo_area,nom_campo_geom)
print ’Actualizando areas’
print cons
cursor.execute(cons)
conn.commit()

In the following listing the above function is used.

51

5.9 To make changes in PostgreSQL with Pyhton. Use of the psycopg2 library

actualiza_areas(nom_tabla=’d.edificios’, nom_campo_area=’area’,
nom_campo_geom=’geom’)

Actualizando areas
update d.edificios set area=st_area(geom)

Selecting rows

To retrieve the database data, a sentence select have to be used. The results remain stored in the
cursor variable used to execute the select sentence. The fetchall method returns all the records in a
list of tuples, and empties the cursor. That means that the records can not be retrieves again. Each row
selected in the select query is represented in a tuple, inside the list returned by fecthall.

A tuple is a immutable list, which is used like a list to retrieve its elements. The first tuple element
contains the field values in the order done by select query.

The ’u that appears before the string values indicates that is a UNICODE string, that is, the string
can contains Latin characters.

In the below example a function that selects and returns some rows from the d.buildings is showed.
The function parameter description is inside the function.

def selecciona_datos_edificios(cond_where=None, lista_valores=None):
"""
Selects some rows from the d.buildings table.
Use examples:

selecciona_datos_edificios()#selects all rows
selecciona_datos_edificios(’nombre=%s and edad<%s’, [’juan’,

40])
selecciona_datos_edificios(’gid=%s’, [8])#selects only the

row which gid=8

cond_where: string with the row’s accomplish requirements.
YOU CAN NOT SPECIFY THE QUERY FIELD VALUES DIRECTLY.
NEVER DO THAT. Instead you have to put a ’%s’ in the
field value position.

lista_valores: List which has the query field values, in the
order in which they appears in the query.

returns: A list of tuples with the selected rows.
[(row1),(row2),(row3), ...]
Each row conains:

(gid, descripcion, geometría en formato texto) -->
(1, u’Primera descripcion’, u’POLYGON((727844

4373183,727896 4373187,727893 4373028,727873
4373018,727858 4372987,727796 4372988,727782
4373008,727844 4373183,727844 4373183))’

"""
cons=’select gid, descripcion, st_astext(geom) from d.edificios’
if cond_where <> None:

cons += ’ where ’ + cond_where
cursor.execute(cons,lista_valores)

else:
cursor.execute(cons)

print ’Consulta: ’ + cons
return cursor.fetchall()

In the following listing, a function which retrieves the rows selected is showed:

52

5.9 To make changes in PostgreSQL with Pyhton. Use of the psycopg2 library

def print_registros_completos(lista_registros):
print "Full rows"
for registro in lista_registros:

print registro

def print_registros_campos(lista_registros):
print "Prints each field name and field value"
for registro in lista_registros:

print "gid: " + str(registro[0])
print "descripcion: " + str(registro[1])
print "geometria: " + str(registro[2])

In the following listing a example of use from the three previous functions is presented:

lista_registros= selecciona_datos_edificios()
Consulta: select gid, descripcion, st_astext(geom) from d.edificios

print_registros_completos(lista_registros)
Registros completos
(1, u’Primera descripcion’, u’POLYGON((727844 4373183,727896

4373187,727893 4373028,727873 4373018,727858 4372987,727796
4372988,727782 4373008,727844 4373183,727844 4373183))’)

(2, u’Segunda descripcion’, u’POLYGON((727988 4373188,728054
4373192,728051 4373093,727983 4373093,727988 4373188))’)

print_registros_campos(lista_registros)
Registros campos
gid: 1
descripcion: Primera descripcion
geometria: POLYGON((727844 4373183,727896 4373187,727893

4373028,727873 4373018,727858 4372987,727796 4372988,727782
4373008,727844 4373183,727844 4373183))

gid: 2
descripcion: Segunda descripcion
geometria: POLYGON((727988 4373188,728054 4373192,728051

4373093,727983 4373093,727988 4373188))

In the following example, a where condition is used to filter the rows selected:

lista_registros=selecciona_datos_edificios(cond_where=’area<%s’,
lista_valores=[10000])

Consulta: select gid, descripcion, st_astext(geom) from d.edificios
where area<%s

print_registros_completos(lista_registros)
Registros completos
(2, u’Segunda descripcion’, u’POLYGON((727988 4373188,728054

4373192,728051 4373093,727983 4373093,727988 4373188))’)

print_registros_campos(lista_registros)
Registros campos
gid: 2
descripcion: Segunda descripcion
geometria: POLYGON((727988 4373188,728054 4373192,728051

4373093,727983 4373093,727988 4373188))

53

5.10 Functions to help the student

Functions to help the student

To execute queries with HTML data forms

Some functions are available to the student, in order to facilitate his own project develop. That
functions are general and work whit any table and form. The requirement to use it in table editions, is
that the control input names have to match with whit the field table names. All the functions described
here are in the project dw_pozossan_sessions, with long comments.

We have to join the data user introduced in the web, in HTML forms, with the execution of so-
me Python functions. A JavaScript function called formToJSONString has been created. That function
transforms the HTML form data in a JSON string, and that string is the data which the python functions
created need to know the introduced user data. The formToJSONString function only receives the the
page’s HTML form name. That function is located in the file general_code.js. To make the changes in the
tables, the Python functions receive that JSON sring, in the registro parameter. That Pyhton functions
are located in the py project package, in the following modules:

actualizar_tabla.py: Updates table rows. Contains a function which receives a table name, the pri-
mary key table name, the primary key field value from the row to update, and a JSON row data
(registro). The function can also update the table geometries. The latest version of that file is in
Poliformat (recursos/2017/pozossan_web_projects/).

borrar.py: Deletes table rows. Contains a function which receives a table name, the primary key name
field, and the primary key name field value from the row to delete.

conectar.py: Contains a function that makes a psycopg2 connection, and makes a Python dictionary
with de Psycopg2 connection and cursor objects.

consultar_tabla.py: Contains a function that receives a table name, the primary key field name, the
primary key field name value, and a JSON string (registro). The function selects the table row
which the primary key field value matches. The JSON string (registro), is used to know the table
field names. The function returns a JSON, with some key and values, one of this is other JSON
which contains a list whit the row selected. If the primary key field values is not gave, all the rows
are returned in the second JSON.

insertar.py: Inserts a row. Contains a function that receives a table name, the primary key filed name,
and a JSON string (registro), with the names and field values of the row to be inserted. The
function inserts the row, with or without geometry.

var_globales.py: Global variables with the data conexion and the program configuration.

transformar_coords_ol_to_postgis.py: Contains a function that receives a OL3 coordinates string,
and returns a string coordinates in PostGIS format. This transformation is necessary to insert
geometries in the database.

check.py: Contains use example of each function. That module have to be downloaded from Poliformat
(recursos/2017/pozossan_web_projects/) an copied in the py package.

The function formToJSONString, and the Pyhton functions described in this section, is easier to
make changes in PostGIS tables.

54

5.11 Exercise 9. Database update across Internet

To load a JSON string in a HTML form

The described Python functions return a JSON string with a row. That JSON is received by the client
in JavaScript. To show directly the row data in the corresponding HTML form, the function load_values_form,
in the file load_values_form.js has been created.

Exercise 9. Database update across Internet

The goal of this exercise is that the student have able to modify the database with the data gave by
the user in the geoportal.

The functionalities requested here can be programmed directly in the student personal project. If
you do not have it jet, you can do the exactly following tasks.

: Create a geoportal where the d.edificios layer be published by WFS. Create a form with the field
table names: gid, description, type (type of geometry, in this case Polygon), and coordinates (to
store the polygon coordinates).

: Each time you click over a building, a query have to be done to the database, and show the field
values and its coordinates. All this information have to be retrieved from the server. You can’t use
the layer WFS data.

It has to have a button in the buildings form to delete the building in the database.

: It has to have a button in the buildings form to save the changes done in the HTML form, in the
data base table row which corresponds whit the row showed in the HTML form.

It has to have a button to insert a new building with the current data stored in the HTML form. The
form building coordinates have to be able to be drown in the map, with the snapping interaction
to the existing buildings activated.

Delibery You do not have to deliver nothing, only to show the functionalities to the lecturer.

Session control

Cuando es necesario diferenciar usuarios, por las cosas que puede hacer cada uno de ellos, es
necesario identificarlos mediante usuario y contraseña. Una vez identificado, el servidor debe recordar
quién es cada usuario, ya que el usuario está usando la página y está continuamente haciendo peti-
ciones al servidor. Como el servidor recuerda qué usuario, es puede dar acceso a las partes correctas
del programa. El servidor debe olvidar al usuario si este cierra el navegador. Para esto hay dos cosas
necesarias:

When it is necessary to difference users, by the permissions that each one have, it is necessary to
identify each user by its credentials. Once identified the user, the server have to remember whose user
is each request from, to allow the request or not. The server have to forget the user only if the user
close the web browser. This is only possible using session variables. The functioning is the following:

First: the web browser genetates a random number each time that a page is visited. That number
is the session number.

Second: it is needed a library to save in the hard disk the session number and the user data, whilst
the user do not close de web browser. That library have to be installed, and is the developer who
program which data must to be saved in each user session.

55

5.12 Session control

Each time that the user, browsing, makes a request, the server checks the session number and if
the user is already identified, that is, if the user has already initialized a session. After that goes ahead
with the request or not.

When the user closes the web browser, changes the session number and the user have to identify
again.

Para la gestión de variables de sesión se va a instalar una nueva librería, denominada Beaker. Se
instala con sudo apt-get install pyton-beaker. Luego hay que reiniciar el servicio de Apache.

To the session variables management you need to install a new Python library called Beaker. You
have to execute the command: sudo apt-get install pyton-beaker. Once installed the Apache service
have to be initialized.

Beaker can write the session variables in a database or a folder. In this case the folder mode has
been chosen. Then you have to create a new folder, and to give write permission to Apache to it. Apache
belongs to the www-data, group, an uses the www-data user.

To create the folder an give permissions to Apache:

sudo mkdir /var/www/apps/sessions
sudo chown -R www-data:www-data /var/www/apps/sessions
sudo chmod -R og-r /var/www/apps/sessions

Session management example with Beaker

Coming up a example of session variables saving is sown. The variable will be accessible until the
user closes the web browser.

Listado 5.4: Ejemplo de gestión de sesiones con Beaker

def application(environ, start_response):
session = environ[’beaker.session’]
if not session.has_key(’value’):

session[’value’] = 0
session[’value’] += 1
session.save()#save the data session in the memory
session.persist()#save the data session in the hard disk

start_response(’200 OK’, [(’Content-type’, ’text/plain’)])
return [’The current value is: %d’ % session[’value’]]

####To manage sessions in /var/www/apps/sessions/ folder##########
session_opts = {

’session.type’: ’file’,
’session.key’:’session_pozossan’,
’session.secret’:’secretkey_pozossan’,
’session.data_dir’:’/var/www/apps/sessions/’,
’session.cookie_expires’: True,
’session.key’:’session_pozossan’,
’session.secret’:’secretkey_pozossan’,
’session.validate_key’:’some secret value’

}
’session.encrypt_key’:’some other value’
from beaker.middleware import SessionMiddleware
application = SessionMiddleware(application,session_opts)

In the above listing, the SessionMiddleware class, through its constructor, adds to the dictionary
environ a new key called beaker.session, which value is a object, similar to a Python dictionary. The
session object, that is retrieved through the beaker.session key, allows to add values inside the object

56

5.12 Session control

session, with the same form that a dictionary: session[ćlave]́=valor. Once the values are added, the
method save and persist have to be called, in order to save the new data in the session object.

The session object values are retrieved as the same form as a Python dictionary values: va-
lor=session[‘clave’].

This can be used to know if a user is already identified or not. To do this:

A register form is sent to the user. The user fills the form and send it to the server.

The server receives de form data, and uses higher user credentials to connect to the database
and check if the user name and password are correct. If it is right gets the kind of user. To do that
a user table (users) is usually used. The users table usually have the user login, user name, other
data and the kind of user. Depending of the king of user, the WSGI application will give access
to a request or not. Usually there are that types of user: editor, consultant, and administrator. In
the case of the textitdw_pozossan_sessions project, the user authentication data are in the table
d.empleados. The user login is in the dni field, and the password is in the apellido1 field.

Once the server knows that the user is right, and the kind of user, all the data user are saved,
using the SessionMiddleware class. Then the server sends a answer to the client and the request
execution in the server finishes.

On finishing the request server execution, the WSGI application finishes. That means all the varia-
bles are cleaned, except the session variables, which remain in the environ[‘beaker.session’]) object.
Thanks to that object it is possible to know if the user has already initialized a session or not. Therefore,
to check if the user is identified or not is always a task to do, when the user wants to do something in
the page which requires some privileges.

In the session variables you can save almost any thing, even complex objects.

57

CAPÍTULO 6
Evaluation

6.1 Evaluation

Evaluation

The subject evaluation is divided in two parts: the class exercises (40%) and a own project (60%).
The exercises an the project can be done by pairs.

The exercises are the ones which appears in the DesarrolloWeb2017_en.pdf document. The deli-
very is done in class time, while an other exercise is being done. The delivery of the exercises consists
in show the exercise to the lecturer and to answer some questions.

The own project consists in a geoportal, chosen by the student. The geoportal has a minimum
requirements. The class exercises can be applied to the own project, instead of to do the exercise,
always that all the requirements in the exercise be accomplished. In an other form: instead of doin the
exercises in the pdf file, you can advance your own project, if all the steps in each exercise are done in
your own project.

The project will be showed the last class, and will be evaluated in that moment.

Project minimum requirements of the own project

The geoportal has to have at least the following elements:

A navigation menu, where appears and disappears parts of the page, on pressing the menu
elements.

A map, done with OpenLayers, Leaflet or other JS library.

• Layers wms and wfs. The layers have to be created by the student and be published by
GeoServer or MapServer.

• Base layers like ortophotos, OSM, etc.

• One of the wfs layers has to be labeled.

• One of the wms layers has to have a field value simbology, using a SLD file.

• Cursor coodinates indicator and a layer control.

• Element selection, at least from a one layer. On each element selection, a form have to be
showed with the selected element database data. You have to retrieve the data from the
server. The request has to be done with Ajax.

• Has to be able to modify elements from a one layer, and to change all the data in the
database: geometries and data fields.

• You have to be able to draw new elements and to add them to the database, sending the
corresponding form.

• You have to be able to delete elements from the database.

• On drawing or modify elements from a layer, the snap interaction has to work over the
elements from at least one layer.

The session management is optional.

59

Bibliografía
[1] Jose Carlos Martínez Llario, PostGIS 2. Análisis Espacial Avanzado, 2012.

[2] Adrian Holovaty, Jakob Kaplan-Moss, La guía definitiva de Django, 2009.

[3] Joseph W. Lowerly, Mark Fletcher, HTML 5 para desarrolladores, 2011.

[4] Juan Diego Gauchat, El gran libro de HTML5, CSS y JavaScript, 2012

Páginas web.

[5] Página de referencia HTML5: http://www.w3schools.com/html

[6] Página de referencia de CSS3: http://www.w3schools.com/css/default.asp

[7] Tutorial: http://www.tutosytips.com/aprende-html5-desde-0

[8] Referencia HTML 5 para desarrolladores. http://www.html-5.com

[9] Compatibilidad de HTML 5 con dispositivos móviles: http://mobilehtml5.org

[10] Tipos de controles input: http://www.w3schools.com/html/html_form_input_types.asp

[11] Control canvas http://www.html5canvastutorials.com/advanced/html5-canvas-mouse-coordinates/

[12] Open Geospatial Consortium, OGC. www.opengeospatial.org

[13] PostgreSQL. http://www.postgresql.org

[14] PostGis. http://postgis.refractions.net. Extensión que da soporte de datos espaciales a la base de
datos

[15] Descripción del lenguaje SQL http://www.postgresql.org/docs/9.1/static/
tutorialsql.html

[16] Descripción del lenguaje PL/SQL http://www.postgresql.org/docs/9.1/
static/plpgsql.html

[17] Quantum Gis, Qgis. http://www.qgis.org

[18] Python. http://www.python.org

[19] PyQt4. http://www.riverbankcomputing.co.uk/software/pyqt/intro

[20] PIL. http://www.pythonware.com/products/pil. Biblioteca Python el trabajo con imágenes

[21] psycopg2. http://pypi.python.org/pypi/psycopg2. Biblioteca Python para la conexión con Post-
greSQL

[22] Eclipse. http://www.eclipse.org. Entorno de desarrollo (IDE)

[23] PyDev http://pydev.org. Plugin para Eclipse para el desarrollo en el lenguaje Python

60

	Web develop in Linux
	Introduction to Linux
	Apache HTTP server
	Apache configuration files
	Project folder organization in this course
	Check a WSGI project
	Python code of the WSGI application ejemwsgi
	Static code of the WSGI application ejemwsgi

	HTML5, CSS y JavaScript
	Technologies related with the developing and geoportals
	Base de datos: el componente más importante

	HTML 5
	New features from HTML 5
	Publicar una web
	HTML 5 label classification
	Labels for the structure of the page
	Label for the page structure inside the BODY
	Text groups
	Hipertext and semantics
	Tablas
	HTML5 resources

	Exercise 1. First steps with HTML 5
	Exercise 2. Creation of a web page with structure but without styles

	Cascade style seeds. CSS
	Positioning elements in HTML 5 with CSS
	Exercise 3. CSS.

	Formularios HTML5
	Práctica 4: formularios

	JavaScript
	Exercise 5. JavaScript
	GPS: Geolocation interface

	IDE configuration and pozossan projects installation
	IDE configuration
	pozossan project installation

	OpenLayers 3.5
	Configure JSONP in GeoServer
	OpenLayers 3.5 map definition
	WMS geoserver Styles. SLD
	Click, Selec, Draw and Snap interactions
	Exercise 6. Map drawing and modify.

	Dynamic sites with Python and WSGI
	Before start programming with Python
	Debugging Python code. File error.log
	Mostrar errores en el navegador
	Remote debugging with PyDev
	Importing modules from a WSGI application

	WSGI application example: dw_wsgi_example
	Create the wsgi application index.py

	Divide and you will win
	Exercise 7. Division of a HTML page in small parts
	Send and process GET data in a wsgi application
	Manage GET data in the urls
	Server data send from html, using GET method
	Example of processing GET data in order execute the adequate Python function

	Manage JSON strings
	Sending data to the server and to receive data from the server with Ajax
	Exercise 8. Ajax
	To make changes in PostgreSQL with Pyhton. Use of the psycopg2 library
	Table creation
	To insert rows with geometry
	Updating rows
	Selecting rows

	Functions to help the student
	To execute queries with HTML data forms
	To load a JSON string in a HTML form

	Exercise 9. Database update across Internet
	Session control
	Session management example with Beaker

	Evaluation
	Evaluation
	Project minimum requirements of the own project

